
MARIN: A Research-Centric Interface for Querying
Software Artifacts on Maven Repositories

Johannes Düsing
TU Dortmund

Dortmund, Germany
johannes.duesing@tu-dortmund.de

Jared Chiaramonte
Arizona State University

Tempe, USA
jchiara1@asu.edu

Ben Hermann
TU Dortmund

Dortmund, Germany
ben.hermann@cs.tu-dortmund.de

Abstract—Maven Central is the largest open repository for
JVM libraries, hosting just under 15 million artifacts as of
November 2024. Its popularity has made it a prime target for
malicious actors to upload malware or exploit vulnerabilities –
one in eight open source downloads have been vulnerable in 2023.
Consequently, analyzing the artifacts is essential to understanding
and improving software security and safety, both for individual
projects and on a large-scale.

However, current implementations of concrete analyses do
not separate the infrastructural task of iterating and accessing
artifacts from their domain-specific analysis task. Consequently,
features are implemented many times in different variations,
increasing the potential for bugs as well as the overhead in
development and maintenance.

With this work we propose MARIN, a framework for con-
ducting analyses targeting software hosted on Maven Central.
MARIN handles common infrastructural tasks in such scenar-
ios, including iterating artifacts, retrieving metadata, parsing
binaries, and resolving dependencies. It is designed to have
minimal performance overhead, using both internal caches and
the local Maven repository to reduce the number of HTTP
calls and computations. This way, researchers can solely focus
on implementing their domain-specific analysis task – MARIN
provides configurable facilities to execute it for all artifacts on
Maven Central.

Index Terms—Static Analysis, Repository Mining, Maven Cen-
tral, Large-Scale Analysis

I. INTRODUCTION

Public software component repositories like Maven Cen-
tral [1] are a crucial part of the software development process.
For many projects, third-party code from such repositories
constitutes the majority of the overall code base [2], [3]. Be-
sides benefits in productivity, this practice can also introduce
security risks to a project – according to Sonatype, one in eight
open source downloads has been vulnerable in 2023 [4].

Consequently, the reuse of third-party libraries has become
an intensively researched field. This includes detecting vul-
nerabilities [5], software evolution [6] and investigating API
(in-)compatibility [7], [8]. One promising approach for doing
so is large-scale static analysis - an implementation pattern
where a large part of a repository is analyzed statically, i.e.
without executing the code under analysis [7], [9]–[11].

Researchers often implement such analyses from scratch -
reuse of analysis implementations or analysis results rarely
occurs [12], [13]. This approach results in some disadvantages:
Implementation effort is expended multiple times, prototypes

are less mature, and bugs are more likely. Also, any change in
a repository’s API could break analysis implementations, thus
increasing maintenance overhead.

With this work, we propose MARIN, the MAven Research
INterface. MARIN is a JVM-based library that provides an ab-
stract framework for implementing analyses targeting Maven
Central. It implements many Maven-specific functionalities in
accordance with their specification, removing the need for re-
implementation and thus reducing the likelihood of introduc-
ing bugs. MARIN introduces a clear separation between the
actual analysis implementation – which is domain-specific –
and the analysis infrastructure, which is provided by MARIN.
This rectifies the issues mentioned above: Changes to the
Maven Central API will only affect MARIN and not propagate
further, while common functionalities for working with the
repository are implemented exactly once by MARIN, and can
be relied on by client analyses.

Given an actual analysis implementation that processes a
single Maven artifact, MARIN handles tasks like accessing the
index, applying the analysis to a (configurable) set of artifacts,
aggregating data from pom or jar files (as required), as well
as incremental restarts.

MARIN implements many Maven-specific functionalities,
including the resolution of direct and transitive dependencies,
analysis of dependency conflicts and support for dependency
version ranges. We represent both raw information from an
artifact’s metadata file (e.g. incomplete version specifications,
property references, imports), as well as resolved information
– both may be useful for implementing concrete analyses.

In short, this work contributes:

• A brief survey of large-scale static analyses implementa-
tions motivating the need for a common interface.

• An implementation of MARIN, a JVM-based library that
facilitates large-scale program analysis on Maven Central.
MARIN is available on GitHub [14].

• A performance evaluation for analyses built with
MARIN, which is available on Zenodo [15].

Our evaluation finds that configuring MARIN to only retrieve
information that is truly required for an analysis can save a
lot of execution time – which can be further reduced by up to
88% using our built-in multi-threading support.

II. MOTIVATION AND STATE-OF-THE-ART

In order to understand requirements for building large-
scale program analyses, we survey existing implementations
focusing on the features they require and the tools they use.

A. Methodology
To find relevant publications, we focused on the Mining

Software Repositories (MSR) conference series, specifically
its Data and Tools Showcase Track and technical papers. This
was done since the conference deals with mining information,
often on a large scale, from repositories like Maven Central,
while the specific tracks also call for implementations of such
analyses. We extend this initial set by the use of snowballing.
The search terms ”Java” and ”Maven” were used to filter
for relevant publications. Our final data set consists of ten
publications on analysis implementations [7], [9], [16]–[23].

For our purposes, we are interested in two different aspects
of each publication: the implementation’s feature requirements
(A1) and tools used (A2). To obtain meaningful results, we
employ an approach based on open card sorting [24]. In that,
for every publication we extracted notes on both A1 and A2.
We then grouped notes into common categories per aspect.

B. Results
For aspect A1, we obtained a set of seven categories. Table I

illustrates their names, the papers associated with the category,
and a Prevalence Score SP indicating how many of the total
papers fall into that category. We can see that the most popular
categories are ”Enumerate Repository Contents” (C1) and
”Compare Semantic Versions” (C2) - 90% and 80% of all
papers, respectively, fall into those categories. On the other
hand, only three papers require enumerating classes (C7). In
general, we can observe a relatively high agreement among
publications, with at least 70% belonging to five categories.

For A2, we identify tools and libraries used by the publica-
tions in our data set. The results are shown in Table II, with
the last column indicating when the respective tool reached its
end-of-life. Here, we observe much less agreement compared
to A1 - no tool is used by more than two publications. Five
tools reached end-of-live, only Apache Commons, Maven-
Model and the Maven Artifact API are still being maintained.

C. Discussion
Our findings are a clear indication on what is required

of a research interface for large-scale analyses: Features C1
through C5 are used by at least 70% of all publications
surveyed. Working with binary files (C6 and C7) is still
relevant for some publications, but to a lesser degree.

While many tools focus on parsing metadata and resolving
dependencies (T1, T4, T8) or domain-specific tasks (T3, T6,
T7), little focus is put on addressing the large-scale aspect,
especially regarding C1. While T5 was originally designed to
fill this gap, its last commit was over ten years ago.

In summary, we observe that while some important features
for large-scale static analysis are not supported by tools at all,
others can be implemented using multiple different libraries
or frameworks.

III. DESIGN

Based on the observations made from our literature survey,
we derive a design for MARIN that covers as many common
large-scale analysis requirements as possible.

A. Requirements

We obtain a set of feature requirements based on our
findings in Table I. MARIN must:

• enable users to enumerate the identifiers, pom.xml and
JAR files of Maven Central in order to parse metadata
or binaries.

• always parse some basic metadata when enumerating
artifacts in order to provide access to dependencies, time
of release, and version information.

• extract some structural information from JAR files in
order to simplify the enumeration of classes and other
binary analyses.

• resolve transitive and effective dependencies according
to the Maven specification in order to enable whole-
program analyses.

We also define some non-functional requirements based on
our own experience with large-scale analyses in general. Such
requirements are often overlooked, but greatly contribute to
the reproducibility and adoption of analysis implementations.
MARIN should:

• impose minimal performance overhead in order to make
large-scale analyses feasible.

• provide facilities to pause, restart, and re-run analyses, as
well as to recover from unexpected shutdowns, in order
to ease deployment and reproducibility.

B. Data Model

Based on these requirements, we derive a suitable data
model to represent the core domain of large-scale static
analyses on Maven Central. Figure 1 presents the most relevant
parts of this model as an UML class diagram. It is centered
around a class named Artifact, which represents what is
colloquially referred to as a Version or Release of a library.

As indicated in the diagram, Artifacts may be enriched
with up to three different types of ArtifactInformation
- PomInformation, IndexInformation, and
JarInformation. We decide to introduce this separation
since each kind of information is obtained from a different
source, which involves downloading and / or parsing files. In
order to only introduce the minimal performance overhead
necessary for any given concrete use-case (as per our
non-functional requirements), the user may specify which
information object kinds an Artifact shall be enriched with.

Parsing pom.xml files, we obtain relevant information
including the artifact’s description, licensing information, de-
fined properties [25] as well as direct – and managed [26]
– dependencies. It must be noted that the latter may be
incomplete, as Maven allows referencing properties and
parts of dependency specifications from other artifacts via
the <parent>-mechanism or import-scoped dependen-
cies [26] – therefore we encapsulate this information in a

TABLE I
RESULTS OF OPEN CARD SORTING PROCESS FOR A1 SORTED BY

PREVALENCE

ID Feature Category Papers SP
C1 Enumerate Repository Contents [7], [9], [16]–[20], [22], [23] 90%
C2 Compare Semantic Versions [7], [9], [17]–[21], [23] 80%
C3 Parse Metadata or Configurations [9], [16]–[20], [23] 70%
C4 Compute Dependencies [9], [16]–[20], [23] 70%
C5 Get Time of Release [9], [16], [18]–[21], [23] 70%
C6 Parse Binaries or Source File(s) [7], [16], [17], [22] 40%
C7 Enumerate Classes in Binaries [7], [16], [22] 30%

TABLE II
RESULTS OF OPEN CARD SORTING PROCESS FOR A2

ID Tool Used By End-of-Life
T1 Eclipse Aether [9], [23] Feb 2016
T2 Apache Commons [19], [20] Still Active
T3 Dependency Graph Miner [21] Dec 2019
T4 Maven-Model [19], [20] Still Active
T5 PomWalker [19], [20] Jan 2014
T6 FindBugs [17] Mar 2015
T7 Clirr [7], [16] Feb 2006
T8 Maven Artifact API [7] Still Active
T9 Closed Source / Proprietary [16], [18] /

ClassFile

+ ThisTypeFQN : String
+ SuperTypeFQN : Option<String>
+ ClassFileVersion : Long
+ InterfaceTypes : List<String>
+ AccessFlags : Int

Dependency

+ Exclusions : Set<String>
+ Scope : String
+ IsOptional : Boolean
+ IsRange : Boolean

RawPomFeatures

+ Properties : Map<String, String>
+ Repositories : List<String>
+ Licenses : List<String>
+ Description : String

0..m

0..n

JarInformation

+ CodeSize : Long
+ NumPackages : Int
+ NumClasses : Int
+ NumMethods : Int
+ NumFields : Int

PomInformation

+ TransitiveDependencies : List<Artifact>
+ EffectiveDependencies : List<Artifact>
+ PomImports: List<Artifact>
+ PomParent: Option<Artifact>

Package

+ Packaging : String
+ Size : Long
+ SHA1Checksum : String

IndexInformation

+ Name : String
+ IndexPosition : Long
+ LastModified : Long

«abstract»
ArtifactInformation

ArtifactIdent

+ GroupId		 : String
+ ArtifactId : String
+ Version		 : String
+ Repository : String

Artifact

 has effective
0..n

0..m

 manages
0..n

0..m

 contains 1

0..n

 defines
0..n

0..m

1

0..n

h a s 1

conflicts
references 0..n

0..m

 packaged as

1..n

1

enriched with
1..31 relocated to

0..1 0..n

 identified by
0..n1

Fig. 1. The Core Data Model of MARIN

class called RawPomFeatures. PomInformation builds
atop of this and provides access to the effective data as well,
resolving the aforementioned references to other artifacts and
building a complete transitive dependency tree. The same
features are available for local projects that are not hosted
on any repository online.

Instances of class JarInformation hold basic infor-
mation on an artifact’s implementation, including the total
code size and some statistics on the number of programming
constructs. Based on our requirements, we further chose to
represent a list of classes, each holding enough information to
construct the artifact’s type hierarchy if necessary.

Finally, IndexInformation represents data stored in
the Maven Central Lucene Index [27] which MARIN uses to
enumerate all artifacts within the ecosystem. This class holds
information on different Packages available, as in Maven a
single artifact may be published in multiple different formats.

C. Architecture

Figure 2 shows a UML class diagram of MARIN’s central
components for user interaction.

The IndexWalker can be used to iterate the contents of
a Maven repository – this corresponds to our first functional
requirement. It provides access to either ArtifactIdent

IndexWalker

+ iterator(): Iterator<ArtifactIdent>
+ getAllArtifacts(): List<Artifact>
+ getAllArtifactIdents(): List<ArtifactIdent>
+ getArtifacts(skip: Long, take: Long): List<Artifact>
+ getArtifactIdents(skip: Long, take: Long): List<ArtifactIdent>
+ getArtifactsByDate(since: Long, until:Long): List<Artifact>
+ getArtifactIdentsByDate(since: Long, until: Long): List<ArtifactIdent>

«abstract»
MavenCentralAnalysis

+ ResolvePom: Boolean
+ ResolveJar: Boolean
+ ResolveIndex: Boolean
+ ResolveTransitivePoms: Boolean

+ analyzeArtifact(a: Artifact): Void
+ runAnalysis(args: String[]): Map<ArtifactIdent, Artifact>

Fig. 2. Main Components of MARIN

or Artifact objects, where the latter is enriched with
IndexInformation.

The center-piece of MARIN is the abstract class
MavenCentralAnalysis. To extend it, users only
have to provide an implementation of the method
analyzeArtifact that defines how a single
artifact shall be analyzed, and select which kind(s)
of ArtifactInformation they require. Calling

TABLE III
AVERAGE EXECUTION TIMES PER CONFIGURATION

Configuration Description Average Duration [hh:mm:ss]
C1 Index only 00:00:09
C2 Raw POM only 00:28:55
C3 Transitive POM only 02:11:35
C4 JAR only 02:15:37
C5 All information 04:42:09

runAnalysis from within a main Method will then
start a full large-scale analysis of Maven Central, calling
analyzeArtifact for each individual artifact.

The class by default supports a number of execution
modes selected via command-line parameters, including index
pagination, custom filters on artifacts by publication date,
incremental restarts from the last known index position, and
multi-threading. Further information about relevant compo-
nents and their interfaces can be found on the MARIN GitHub
page [14].

IV. EVALUATION

We evaluate our implementation of MARIN by running
analyses with different resolution configurations and timing
them. We select the following configurations, as they represent
different use-cases for real-world analyses:

Index Information (C1), Raw POM Information (C2),
Effective POM Information (C3), JAR Information (C4), All

Information (C5)

We analyze the first 250, 000 index entries, yielding 109, 794
unique identifiers for every configuration.

All configurations are executed on a server with an Intel
Xeon E5-2650 quad-core CPU and 32GB of RAM. We run
each configuration three times and report averages here.

A. Results

Table III reports the average execution times per configu-
ration. We can see that the most complex configuration (C5)
also takes the longest time to execute. The most expensive
part of the resolution seem to be the resolution of JARs(C4)
and the transitive aspect of POM resolution (C3), each taking
over two hours. Our findings illustrate that it is important to
select only the information required for a concrete analysis to
avoid unnecessary performance overhead.

B. Multi-threading

To further improve the performance for client analyses,
MARIN supports multi-threaded execution. We select configu-
rations C3 and C4 and compare their multi-threaded execution
times with the ones reported for single-threaded execution. We
execute both configurations with four and eight threads, using
the --multi <n> switch provided by MARIN.

Table IV shows the results. For C3, using multi-threading
reduces the runtime significantly, namely by 76% (4 threads)
and 88% (8 threads). Reduction rates for C4 are lower but still
significant, reaching up to 39% reduction for eight threads.

TABLE IV
AVERAGE EXECUTION TIMES FOR MULTI-THREADED ANALYSES

Configuration 4 Threads [hh:mm:ss] 8 Threads [hh:mm:ss]
C3 00:31:12 00:15:56
C4 01:38:27 01:23:14

Thus, our multi-threaded implementation has a significant
impact on reducing runtime.

C. Limitations

We observe that some identifiers listed in the index are
no longer hosted on Maven Central. This is due to different
processes being in place in the early days of the repository,
and affects less than 1% of the artifacts in our evaluation.

Also, we observe a number of errors when parsing POM and
JAR files. These are either due to the files being malformed
or caused by limitations of the underlying libraries – Maven
Model for XML and OPAL [28], [29] for JAR files.

V. RELATED WORK

In 2023, Litzenberger et al. proposed DGMF, a dependency
graph mining framework [13]. While it does provide a com-
mon model for such graphs, utilities to validate and store
them, and extension points for custom implementations, it is
still specific to the domain of dependency graph generation
- it cannot be used for any large-scale analysis. The same
is true for Goblin, a framework for enhancing the Maven
Central dependency graph with custom values and timestamp-
dependent analysis capabilities [23].

Git2Net is a Python package that provides functionality to
enumerate, clone and analyze repositories from GitHub [30].
It focuses less on the actual contents of a repository (i.e.
metadata files and dependencies), and more on authorship and
file edits.

VI. CONCLUSION

In this paper we presented MARIN, a framework for con-
ducting analyses on Maven Central software artifacts. MARIN
untangles the often intertwined implementations of domain-
specific analysis tasks and repository-specific infrastructural
tasks by providing clean, specification-adhering implemen-
tations for the latter. Our evaluation shows that being able
to configure the amount of information extracted per artifact
helps reducing unnecessary performance overhead for concrete
analyses, while using MARIN’s built-in support for multi-
threading can further optimize runtime.

DATA AVAILABILITY

Our artifact is hosted on Zenodo. It contains MARIN and
all information necessary to reproduce our evaluation [15].

ACKNOWLEDGMENTS

Jared Chiaramonte worked on this research during his 2024
internship at TU Dortmund funded by German Academic
Exchange Service (DAAD) in the RISE Germany funding
program. The authors would like to thank the DAAD for
enabling the collaboration which made this project possible.

REFERENCES

[1] Sonatype Inc, “Maven central repository,” https://central.sonatype.com,
2023.

[2] J. L. Barros-Justo, F. Pinciroli, S. Matalonga, and N. Martı́nez-
Araujo, “What software reuse benefits have been transferred to the
industry? a systematic mapping study,” Information and Software
Technology, vol. 103, pp. 1–21, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584918301083

[3] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irl-
beck, “On the extent and nature of software reuse in open source java
projects,” in Top Productivity through Software Reuse, K. Schmid, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 207–222.

[4] Sonatype Inc, “9th annual state of the software supply chain,”
https://www.sonatype.com/hubfs/SSC/2023%20Sonatype-%209th%
20Annual%20State%20of%20the%20Software%20Supply%20Chain-%
20Update.pdf, 2023.

[5] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment and
mitigation of vulnerabilities in open source dependencies,” Empirical
Software Engineering, vol. 25, no. 5, pp. 3175–3215, Sep 2020.
[Online]. Available: https://doi.org/10.1007/s10664-020-09830-x

[6] E. Constantinou and I. Stamelos, “Identifying evolution patterns: a
metrics-based approach for external library reuse,” Software: Practice
and Experience, vol. 47, no. 7, pp. 1027–1039, 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2484

[7] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the maven repository,” in 2014
IEEE 14th International Working Conference on Source Code Analysis
and Manipulation, 2014, pp. 215–224.

[8] A. Dann, B. Hermann, and E. Bodden, “UPCY: safely updating
outdated dependencies,” in 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May
14-20, 2023. IEEE, 2023, pp. 233–244. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00031

[9] A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, and O. Barais,
“The maven dependency graph: A temporal graph-based representation
of maven central,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), 2019, pp. 344–348.

[10] J. Düsing and B. Hermann, “Analyzing the direct and transitive
impact of vulnerabilities onto different artifact repositories,” Digital
Threats, vol. 3, no. 4, feb 2022. [Online]. Available: https:
//doi.org/10.1145/3472811

[11] J. Hejderup, M. Beller, K. Triantafyllou, and G. Gousios, “Präzi:
from package-based to call-based dependency networks,” Empirical
Software Engineering, vol. 27, no. 5, May 2022. [Online]. Available:
http://dx.doi.org/10.1007/s10664-021-10071-9

[12] J. Düsing and B. Hermann, “Persisting and reusing results of static pro-
gram analyses on a large scale,” in 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2023, pp. 888–
900.

[13] T. Litzenberger, J. Düsing, and B. Hermann, “Dgmf: Fast generation
of comparable, updatable dependency graphs for software repositories,”
in 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR), 2023, pp. 115–119.

[14] J. Düsing, J. Chiaramonte, and B. Hermann, “Maven Research Interface
(MARIN),” 2024. [Online]. Available: https://github.com/sse-labs/marin

[15] ——, “MARIN: A Research-Centric Interface for Querying Software
Artifacts on Maven Repositories - Companion Artifact,” Nov. 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.14235313

[16] S. Raemaekers, A. van Deursen, and J. Visser, “The maven repository
dataset of metrics, changes, and dependencies,” in 2013 10th Working
Conference on Mining Software Repositories (MSR), 2013, pp. 221–224.

[17] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and
D. Spinellis, “The bug catalog of the maven ecosystem,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 372–375. [Online]. Available:
https://doi.org/10.1145/2597073.2597123

[18] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring de-
pendency freshness in software systems,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 2, ser. ICSE
’15. IEEE Press, 2015, p. 109–118.

[19] R. G. Kula, D. M. German, T. Ishio, and K. Inoue, “Trusting a library:
A study of the latency to adopt the latest maven release,” in 2015 IEEE

22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2015, pp. 520–524.

[20] R. G. Kula, D. M. German, T. Ishio, A. Ouni, and K. Inoue, “An
exploratory study on library aging by monitoring client usage in a
software ecosystem,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017, pp.
407–411.

[21] C. Soto-Valero, A. Benelallam, N. Harrand, O. Barais, and B. Baudry,
“The emergence of software diversity in maven central,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR), 2019, pp. 333–343.

[22] B. Theeten, F. Vandeputte, and T. Van Cutsem, “Import2vec: Learning
embeddings for software libraries,” in 2019 IEEE/ACM 16th Interna-
tional Conference on Mining Software Repositories (MSR), 2019, pp.
18–28.

[23] D. Jaime, J. E. Haddad, and P. Poizat, “Goblin: A framework for
enriching and querying the maven central dependency graph,” in
Proceedings of the 21st International Conference on Mining Software
Repositories, ser. MSR ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 37–41. [Online]. Available:
https://doi.org/10.1145/3643991.3644879

[24] J. R. Wood and L. E. Wood, “Card sorting: Current practices and
beyond,” J. Usability Studies, vol. 4, no. 1, p. 1–6, nov 2008.

[25] The Apache Software Foundation, “Properties - pom reference - maven,”
https://maven.apache.org/pom.html#Properties, 2024.

[26] Apache Software Foundation, “Introduction to the dependency
mechanism - maven,” https://maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html, 2024.

[27] The Apache Software Foundation, “Maven indexer core - introduction,”
https://maven.apache.org/maven-indexer/indexer-core/, 2024.

[28] M. Eichberg and B. Hermann, “A software product line for static
analyses: the OPAL framework,” in Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State Of the Art in Java
Program analysis, SOAP 2014, Edinburgh, UK, Co-located with PLDI
2014, June 12, 2014, S. Arzt and R. A. Santelices, Eds. ACM, 2014, pp.
2:1–2:6. [Online]. Available: https://doi.org/10.1145/2614628.2614630

[29] D. Helm, F. Kübler, M. Reif, M. Eichberg, and M. Mezini, “Modular
collaborative program analysis in opal,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 184–196. [Online]. Available: https:
//doi.org/10.1145/3368089.3409765

[30] C. Gote, I. Scholtes, and F. Schweitzer, “git2net: Mining time-stamped
co-editing networks from large git repositories,” in Proceedings of the
16th International Conference on Mining Software Repositories. IEEE
Press, 2019, pp. 433–444.

https://central.sonatype.com
https://www.sciencedirect.com/science/article/pii/S0950584918301083
https://www.sciencedirect.com/science/article/pii/S0950584918301083
https://www.sonatype.com/hubfs/SSC/2023%20Sonatype-%209th%20Annual%20State%20of%20the%20Software%20Supply%20Chain-%20Update.pdf
https://www.sonatype.com/hubfs/SSC/2023%20Sonatype-%209th%20Annual%20State%20of%20the%20Software%20Supply%20Chain-%20Update.pdf
https://www.sonatype.com/hubfs/SSC/2023%20Sonatype-%209th%20Annual%20State%20of%20the%20Software%20Supply%20Chain-%20Update.pdf
https://doi.org/10.1007/s10664-020-09830-x
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2484
https://doi.org/10.1109/ICSE48619.2023.00031
https://doi.org/10.1145/3472811
https://doi.org/10.1145/3472811
http://dx.doi.org/10.1007/s10664-021-10071-9
https://github.com/sse-labs/marin
https://doi.org/10.5281/zenodo.14235313
https://doi.org/10.1145/2597073.2597123
https://doi.org/10.1145/3643991.3644879
https://maven.apache.org/pom.html#Properties
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/maven-indexer/indexer-core/
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/3368089.3409765

	Introduction
	Motivation and State-of-the-Art
	Methodology
	Results
	Discussion

	Design
	Requirements
	Data Model
	Architecture

	Evaluation
	Results
	Multi-threading
	Limitations

	Related Work
	Conclusion
	References

